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Responses of primate retinal ganglion 
cells (RGCs) to natural scenes are 
poorly predicted by commonly used 
psuedo-linear models such as 
generalized linear models1. !
!

Gap

Previous studies have shown that under certain conditions, !
RGCs in various species can recieve peripheral input!
from outside their classical receptive fields2-6.  

How do peripheral stimuli influence responses of !
primate RGCs in natural viewing conditions?

Methods

Background

Large-scale multielectrode recordings were performed in 
peripheral macaque retina ex vivo. !

ON and OFF parasol cells were identified, and their receptive 
fields were measured by reverse correlation with a white noise 
stimulus and fit with a Gaussian envelope with standard 
deviation 𝝈, shown on right with contours of 2𝝈, 4𝝈, and 6𝝈.  !

Natural scenes, consisting of images from the van Hateren 
database7 with fixational eye movements simulated by 
Brownian motion8, were presented in the three conditions.

Spot

Modeling responses to natural scenes

Extra-classical receptive field effects
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The observed effects can be explained 
by the fact that spatial correlations in 
natural scenes introduce anticorrelation 
in the gap and spot generator signals. 

Since the spot generator signal tends to be stronger, 
gap response events tend to not be present during full 
field stimulation, while spot events tend to be reduced.   
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The response to the gap stimulus 
(above) had a time course different 
than the response to the full field 
stimulus. !
!
In addition, the response to the gap 
stimulus did not disappear until  
greater than 6𝛔, well outside the 
classical receptive field.

model predictions

recorded spikes
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Surprisingly, this model was more accurate for small spot sizes. The model captured 
responses to stimuli restricted to the receptive field center more accurately than responses to 
stimuli in the surround and periphery.    
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While the observations can be qualitatively explained by linear summation of the 
spot and gap generator signals, a full linear-nonlinear model did not accurately 
capture responses outside the RF center.!
!
 

Peripheral stimulation far outside the classical RF had a 
significant effect during natural viewing conditions.!
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Future work will focus on developing models that more effectively incorporate the 
surround and peripheral input. 
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Consistent with previous 
findings, the periphery had a 
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