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Background Modeling primate retinal ganglion cell responses to natural
scenes using pseudo-linear models

What effect does peripheral stimulation have on RGC
responses under natural viewing conditions?

Pseudo-linear encoding models, where the first step is linear
summation of the stimulus over space and time, have become the
standard for predicting the responses of retinal ganglion cells (RGCs).
They have been successful at predicting responses in some cases’-°. LR with exponentia
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How does model performance on natural scenes compare to white noise?
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The temporal filter is more biphasic and the spiking nonlinearity is more saturated for natural scenes. References
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