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Pseudo-linear encoding models, where the first step is linear 
summation of the stimulus over space and time, have become the 
standard for predicting the responses of retinal ganglion cells (RGCs). 
They have been successful at predicting responses in some cases1-5.!
!

However, it is unclear how accurate this assumption of linearity is, 
given that there are many known nonlinear mechanisms that 
contribute to retinal light responses in specific stimulus conditions and 
cell types6-9. It is unknown whether primate RGCs sum visual inputs 
effectively linearly under the naturalistic conditions that it evolved to 
encode. !

RGCs can receive peripheral input from outside their classical receptive fields8, 
thought to be transmitted through wide field amacine cells. How do peripheral stimuli 
influence responses of primate RGCs in natural viewing conditions? Do we need to 
include peripheral input in our models? 

Methods

Large-scale multielectrode recordings were performed in peripheral 
macaque retina ex vivo. !

Natural scenes consisted of images from the van Hateren database10 
with fixational eye movements simulated by Brownian motion11.

Extra-classical receptive field effects
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How accurate are pseudo-linear models in predicting 
primate ganglion cell responses to naturalistic stimuli?

Modeling primate retinal ganglion cell responses to natural 
scenes using pseudo-linear models

Background

How do different types of pseudo-linear models perform on natural scenes?

How do the model parameters change from white noise to natural scenes? LNP model
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Consistent with previous 
findings, the periphery had a 
mostly suppressive effect.

| |

Modeling

The linear-nonlinear Poisson 
model (LNP) is one of the 
simplest and easiest to use 
models, and has been shown to 
work fairly well. However, it 
does not capture correlated 
firing or precise spike train 
structure, which can be 
captured by more accurate 
generalized linear models (GL). 
However, making these models 
flexible enough to work for 
natural scenes and still 
computationally tractable has 
proven difficult.

Does model performance vary across cell types? 
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Surprisingly, this plateau at 6! can be predicted 
by the spatial extent of the linear filter (as 
measured with a white noise stimulus).

Performance on natural scenes is sensitive to the architecture of the model.

The spatial extent of inputs to ON and OFF parasol RGCs can be predicted 
from the classical receptive field.
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How does model performance on natural scenes compare to white noise?

The LNP model predicts white noise more accurately than natural scenes.
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Nonlinearity

The temporal filter is more biphasic and the spiking nonlinearity is more saturated for natural scenes. 
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Nonlinearity

Previous work indicates that ON parasols integrate visual inputs more linearly than OFF9,12. A similar asymmetry 
was observed in 1/3 preparations tested using natural scenes (shown, same as green preparation above). 
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Results from one 
preparation with 
281 cells are 
shown (same as 
green preparation 
above), but similar 
results were 
obtained in all 3 
preparations.
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